MakeItFrom.com
Menu (ESC)

Grade 38 Titanium vs. 1200 Aluminum

Grade 38 titanium belongs to the titanium alloys classification, while 1200 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 38 titanium and the bottom bar is 1200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
69
Elongation at Break, % 11
1.1 to 28
Fatigue Strength, MPa 530
25 to 69
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
26
Shear Strength, MPa 600
54 to 100
Tensile Strength: Ultimate (UTS), MPa 1000
85 to 180
Tensile Strength: Yield (Proof), MPa 910
28 to 160

Thermal Properties

Latent Heat of Fusion, J/g 410
400
Maximum Temperature: Mechanical, °C 330
170
Melting Completion (Liquidus), °C 1620
660
Melting Onset (Solidus), °C 1570
650
Specific Heat Capacity, J/kg-K 550
900
Thermal Conductivity, W/m-K 8.0
230
Thermal Expansion, µm/m-K 9.3
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
58
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
190

Otherwise Unclassified Properties

Base Metal Price, % relative 36
9.0
Density, g/cm3 4.5
2.7
Embodied Carbon, kg CO2/kg material 35
8.2
Embodied Energy, MJ/kg 560
150
Embodied Water, L/kg 160
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
2.0 to 19
Resilience: Unit (Modulus of Resilience), kJ/m3 3840
5.7 to 180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
50
Strength to Weight: Axial, points 62
8.7 to 19
Strength to Weight: Bending, points 49
16 to 26
Thermal Diffusivity, mm2/s 3.2
92
Thermal Shock Resistance, points 72
3.8 to 8.1

Alloy Composition

Aluminum (Al), % 3.5 to 4.5
99 to 100
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
0 to 0.050
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 1.2 to 1.8
0 to 1.0
Manganese (Mn), % 0
0 to 0.050
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0.2 to 0.3
0
Silicon (Si), % 0
0 to 1.0
Titanium (Ti), % 89.9 to 93.1
0 to 0.050
Vanadium (V), % 2.0 to 3.0
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15