MakeItFrom.com
Menu (ESC)

Grade 38 Titanium vs. ACI-ASTM CD4MCu Steel

Grade 38 titanium belongs to the titanium alloys classification, while ACI-ASTM CD4MCu steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 38 titanium and the bottom bar is ACI-ASTM CD4MCu steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11
18
Fatigue Strength, MPa 530
340
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 40
79
Tensile Strength: Ultimate (UTS), MPa 1000
770
Tensile Strength: Yield (Proof), MPa 910
550

Thermal Properties

Latent Heat of Fusion, J/g 410
300
Maximum Temperature: Mechanical, °C 330
1100
Melting Completion (Liquidus), °C 1620
1430
Melting Onset (Solidus), °C 1570
1380
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 8.0
17
Thermal Expansion, µm/m-K 9.3
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 36
18
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 35
3.5
Embodied Energy, MJ/kg 560
49
Embodied Water, L/kg 160
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
130
Resilience: Unit (Modulus of Resilience), kJ/m3 3840
760
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 62
28
Strength to Weight: Bending, points 49
24
Thermal Diffusivity, mm2/s 3.2
4.5
Thermal Shock Resistance, points 72
21

Alloy Composition

Aluminum (Al), % 3.5 to 4.5
0
Carbon (C), % 0 to 0.080
0 to 0.040
Chromium (Cr), % 0
24.5 to 26.5
Copper (Cu), % 0
2.8 to 3.3
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 1.2 to 1.8
59.9 to 66.3
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
1.8 to 2.3
Nickel (Ni), % 0
4.8 to 6.0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0.2 to 0.3
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 89.9 to 93.1
0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0