MakeItFrom.com
Menu (ESC)

Grade 38 Titanium vs. EN 1.4031 Stainless Steel

Grade 38 titanium belongs to the titanium alloys classification, while EN 1.4031 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 38 titanium and the bottom bar is EN 1.4031 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 11
11 to 13
Fatigue Strength, MPa 530
220 to 400
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
76
Shear Strength, MPa 600
400 to 540
Tensile Strength: Ultimate (UTS), MPa 1000
670 to 900
Tensile Strength: Yield (Proof), MPa 910
390 to 730

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Maximum Temperature: Mechanical, °C 330
770
Melting Completion (Liquidus), °C 1620
1440
Melting Onset (Solidus), °C 1570
1400
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 8.0
30
Thermal Expansion, µm/m-K 9.3
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
3.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
3.7

Otherwise Unclassified Properties

Base Metal Price, % relative 36
7.0
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 35
1.9
Embodied Energy, MJ/kg 560
27
Embodied Water, L/kg 160
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
77 to 94
Resilience: Unit (Modulus of Resilience), kJ/m3 3840
380 to 1360
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 62
24 to 32
Strength to Weight: Bending, points 49
22 to 27
Thermal Diffusivity, mm2/s 3.2
8.1
Thermal Shock Resistance, points 72
23 to 32

Alloy Composition

Aluminum (Al), % 3.5 to 4.5
0
Carbon (C), % 0 to 0.080
0.36 to 0.42
Chromium (Cr), % 0
12.5 to 14.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 1.2 to 1.8
83 to 87.1
Manganese (Mn), % 0
0 to 1.0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0.2 to 0.3
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 89.9 to 93.1
0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0