MakeItFrom.com
Menu (ESC)

Grade 38 Titanium vs. CR011A Copper

Grade 38 titanium belongs to the titanium alloys classification, while CR011A copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 38 titanium and the bottom bar is CR011A copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 11
15
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
43
Tensile Strength: Ultimate (UTS), MPa 1000
220
Tensile Strength: Yield (Proof), MPa 910
130

Thermal Properties

Latent Heat of Fusion, J/g 410
210
Maximum Temperature: Mechanical, °C 330
200
Melting Completion (Liquidus), °C 1620
1090
Melting Onset (Solidus), °C 1570
1040
Specific Heat Capacity, J/kg-K 550
390
Thermal Conductivity, W/m-K 8.0
390
Thermal Expansion, µm/m-K 9.3
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
100
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
100

Otherwise Unclassified Properties

Base Metal Price, % relative 36
32
Density, g/cm3 4.5
9.0
Embodied Carbon, kg CO2/kg material 35
2.6
Embodied Energy, MJ/kg 560
42
Embodied Water, L/kg 160
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
29
Resilience: Unit (Modulus of Resilience), kJ/m3 3840
76
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 62
6.8
Strength to Weight: Bending, points 49
9.0
Thermal Diffusivity, mm2/s 3.2
110
Thermal Shock Resistance, points 72
7.8

Alloy Composition

Aluminum (Al), % 3.5 to 4.5
0
Bismuth (Bi), % 0
0 to 0.00050
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
99.88 to 99.97
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 1.2 to 1.8
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0.2 to 0.3
0 to 0.040
Silver (Ag), % 0
0.030 to 0.050
Titanium (Ti), % 89.9 to 93.1
0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0