MakeItFrom.com
Menu (ESC)

Grade 38 Titanium vs. SAE-AISI 1080 Steel

Grade 38 titanium belongs to the titanium alloys classification, while SAE-AISI 1080 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is grade 38 titanium and the bottom bar is SAE-AISI 1080 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 11
11
Fatigue Strength, MPa 530
300 to 360
Poisson's Ratio 0.32
0.29
Reduction in Area, % 29
28 to 45
Shear Modulus, GPa 40
72
Shear Strength, MPa 600
460 to 520
Tensile Strength: Ultimate (UTS), MPa 1000
770 to 870
Tensile Strength: Yield (Proof), MPa 910
480 to 590

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 330
400
Melting Completion (Liquidus), °C 1620
1450
Melting Onset (Solidus), °C 1570
1410
Specific Heat Capacity, J/kg-K 550
470
Thermal Conductivity, W/m-K 8.0
51
Thermal Expansion, µm/m-K 9.3
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
9.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
11

Otherwise Unclassified Properties

Base Metal Price, % relative 36
1.8
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 35
1.4
Embodied Energy, MJ/kg 560
19
Embodied Water, L/kg 160
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
80 to 84
Resilience: Unit (Modulus of Resilience), kJ/m3 3840
610 to 920
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 62
27 to 31
Strength to Weight: Bending, points 49
24 to 26
Thermal Diffusivity, mm2/s 3.2
14
Thermal Shock Resistance, points 72
25 to 29

Alloy Composition

Aluminum (Al), % 3.5 to 4.5
0
Carbon (C), % 0 to 0.080
0.75 to 0.88
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 1.2 to 1.8
98.1 to 98.7
Manganese (Mn), % 0
0.6 to 0.9
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0.2 to 0.3
0
Phosphorus (P), % 0
0 to 0.040
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 89.9 to 93.1
0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0