MakeItFrom.com
Menu (ESC)

Grade 38 Titanium vs. C19000 Copper

Grade 38 titanium belongs to the titanium alloys classification, while C19000 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 38 titanium and the bottom bar is C19000 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 11
2.5 to 50
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
43
Shear Strength, MPa 600
170 to 390
Tensile Strength: Ultimate (UTS), MPa 1000
260 to 760
Tensile Strength: Yield (Proof), MPa 910
140 to 630

Thermal Properties

Latent Heat of Fusion, J/g 410
210
Maximum Temperature: Mechanical, °C 330
200
Melting Completion (Liquidus), °C 1620
1080
Melting Onset (Solidus), °C 1570
1040
Specific Heat Capacity, J/kg-K 550
390
Thermal Conductivity, W/m-K 8.0
250
Thermal Expansion, µm/m-K 9.3
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
60
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
61

Otherwise Unclassified Properties

Base Metal Price, % relative 36
31
Density, g/cm3 4.5
8.9
Embodied Carbon, kg CO2/kg material 35
2.7
Embodied Energy, MJ/kg 560
42
Embodied Water, L/kg 160
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
18 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 3840
89 to 1730
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 62
8.2 to 24
Strength to Weight: Bending, points 49
10 to 21
Thermal Diffusivity, mm2/s 3.2
73
Thermal Shock Resistance, points 72
9.3 to 27

Alloy Composition

Aluminum (Al), % 3.5 to 4.5
0
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
96.9 to 99
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 1.2 to 1.8
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Nickel (Ni), % 0
0.9 to 1.3
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0.2 to 0.3
0
Phosphorus (P), % 0
0.15 to 0.35
Titanium (Ti), % 89.9 to 93.1
0
Vanadium (V), % 2.0 to 3.0
0
Zinc (Zn), % 0
0 to 0.8
Residuals, % 0
0 to 0.5