MakeItFrom.com
Menu (ESC)

Grade 38 Titanium vs. C42200 Brass

Grade 38 titanium belongs to the titanium alloys classification, while C42200 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 38 titanium and the bottom bar is C42200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 11
2.0 to 46
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
42
Shear Strength, MPa 600
210 to 350
Tensile Strength: Ultimate (UTS), MPa 1000
300 to 610
Tensile Strength: Yield (Proof), MPa 910
100 to 570

Thermal Properties

Latent Heat of Fusion, J/g 410
200
Maximum Temperature: Mechanical, °C 330
170
Melting Completion (Liquidus), °C 1620
1040
Melting Onset (Solidus), °C 1570
1020
Specific Heat Capacity, J/kg-K 550
380
Thermal Conductivity, W/m-K 8.0
130
Thermal Expansion, µm/m-K 9.3
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
31
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
32

Otherwise Unclassified Properties

Base Metal Price, % relative 36
29
Density, g/cm3 4.5
8.6
Embodied Carbon, kg CO2/kg material 35
2.7
Embodied Energy, MJ/kg 560
44
Embodied Water, L/kg 160
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
12 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 3840
49 to 1460
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 62
9.5 to 19
Strength to Weight: Bending, points 49
11 to 18
Thermal Diffusivity, mm2/s 3.2
39
Thermal Shock Resistance, points 72
10 to 21

Alloy Composition

Aluminum (Al), % 3.5 to 4.5
0
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
86 to 89
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 1.2 to 1.8
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0.2 to 0.3
0
Phosphorus (P), % 0
0 to 0.35
Tin (Sn), % 0
0.8 to 1.4
Titanium (Ti), % 89.9 to 93.1
0
Vanadium (V), % 2.0 to 3.0
0
Zinc (Zn), % 0
8.7 to 13.2
Residuals, % 0
0 to 0.5