MakeItFrom.com
Menu (ESC)

Grade 38 Titanium vs. C83300 Brass

Grade 38 titanium belongs to the titanium alloys classification, while C83300 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 38 titanium and the bottom bar is C83300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 11
35
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
42
Tensile Strength: Ultimate (UTS), MPa 1000
220
Tensile Strength: Yield (Proof), MPa 910
69

Thermal Properties

Latent Heat of Fusion, J/g 410
200
Maximum Temperature: Mechanical, °C 330
180
Melting Completion (Liquidus), °C 1620
1060
Melting Onset (Solidus), °C 1570
1030
Specific Heat Capacity, J/kg-K 550
380
Thermal Conductivity, W/m-K 8.0
160
Thermal Expansion, µm/m-K 9.3
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
32
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
33

Otherwise Unclassified Properties

Base Metal Price, % relative 36
30
Density, g/cm3 4.5
8.8
Embodied Carbon, kg CO2/kg material 35
2.7
Embodied Energy, MJ/kg 560
44
Embodied Water, L/kg 160
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
60
Resilience: Unit (Modulus of Resilience), kJ/m3 3840
21
Stiffness to Weight: Axial, points 13
7.0
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 62
6.9
Strength to Weight: Bending, points 49
9.2
Thermal Diffusivity, mm2/s 3.2
48
Thermal Shock Resistance, points 72
7.9

Alloy Composition

Aluminum (Al), % 3.5 to 4.5
0
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
92 to 94
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 1.2 to 1.8
0
Lead (Pb), % 0
1.0 to 2.0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0.2 to 0.3
0
Tin (Sn), % 0
1.0 to 2.0
Titanium (Ti), % 89.9 to 93.1
0
Vanadium (V), % 2.0 to 3.0
0
Zinc (Zn), % 0
2.0 to 6.0
Residuals, % 0
0 to 0.7