MakeItFrom.com
Menu (ESC)

Grade 38 Titanium vs. C95410 Bronze

Grade 38 titanium belongs to the titanium alloys classification, while C95410 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 38 titanium and the bottom bar is C95410 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 11
9.1 to 13
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
43
Tensile Strength: Ultimate (UTS), MPa 1000
620 to 740
Tensile Strength: Yield (Proof), MPa 910
260 to 380

Thermal Properties

Latent Heat of Fusion, J/g 410
230
Maximum Temperature: Mechanical, °C 330
230
Melting Completion (Liquidus), °C 1620
1040
Melting Onset (Solidus), °C 1570
1030
Specific Heat Capacity, J/kg-K 550
440
Thermal Conductivity, W/m-K 8.0
59
Thermal Expansion, µm/m-K 9.3
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
13
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
14

Otherwise Unclassified Properties

Base Metal Price, % relative 36
28
Density, g/cm3 4.5
8.2
Embodied Carbon, kg CO2/kg material 35
3.3
Embodied Energy, MJ/kg 560
54
Embodied Water, L/kg 160
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
57 to 64
Resilience: Unit (Modulus of Resilience), kJ/m3 3840
280 to 630
Stiffness to Weight: Axial, points 13
7.8
Stiffness to Weight: Bending, points 35
20
Strength to Weight: Axial, points 62
21 to 25
Strength to Weight: Bending, points 49
20 to 22
Thermal Diffusivity, mm2/s 3.2
16
Thermal Shock Resistance, points 72
22 to 26

Alloy Composition

Aluminum (Al), % 3.5 to 4.5
10 to 11.5
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
83 to 85.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 1.2 to 1.8
3.0 to 5.0
Manganese (Mn), % 0
0 to 0.5
Nickel (Ni), % 0
1.5 to 2.5
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0.2 to 0.3
0
Titanium (Ti), % 89.9 to 93.1
0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0
0 to 0.5