MakeItFrom.com
Menu (ESC)

Grade 38 Titanium vs. N07776 Nickel

Grade 38 titanium belongs to the titanium alloys classification, while N07776 nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 38 titanium and the bottom bar is N07776 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11
39
Fatigue Strength, MPa 530
220
Poisson's Ratio 0.32
0.3
Reduction in Area, % 29
57
Shear Modulus, GPa 40
79
Shear Strength, MPa 600
470
Tensile Strength: Ultimate (UTS), MPa 1000
700
Tensile Strength: Yield (Proof), MPa 910
270

Thermal Properties

Latent Heat of Fusion, J/g 410
320
Maximum Temperature: Mechanical, °C 330
970
Melting Completion (Liquidus), °C 1620
1550
Melting Onset (Solidus), °C 1570
1500
Specific Heat Capacity, J/kg-K 550
430
Thermal Expansion, µm/m-K 9.3
12

Otherwise Unclassified Properties

Base Metal Price, % relative 36
85
Density, g/cm3 4.5
8.6
Embodied Carbon, kg CO2/kg material 35
15
Embodied Energy, MJ/kg 560
210
Embodied Water, L/kg 160
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
220
Resilience: Unit (Modulus of Resilience), kJ/m3 3840
180
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
23
Strength to Weight: Axial, points 62
22
Strength to Weight: Bending, points 49
20
Thermal Shock Resistance, points 72
20

Alloy Composition

Aluminum (Al), % 3.5 to 4.5
0 to 2.0
Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 0
12 to 22
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 1.2 to 1.8
0 to 24.5
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
9.0 to 15
Nickel (Ni), % 0
50 to 60
Niobium (Nb), % 0
4.0 to 6.0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0.2 to 0.3
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 89.9 to 93.1
0 to 1.0
Tungsten (W), % 0
0.5 to 2.5
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0