MakeItFrom.com
Menu (ESC)

Grade 38 Titanium vs. N08330 Stainless Steel

Grade 38 titanium belongs to the titanium alloys classification, while N08330 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 38 titanium and the bottom bar is N08330 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11
34
Fatigue Strength, MPa 530
190
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
76
Shear Strength, MPa 600
360
Tensile Strength: Ultimate (UTS), MPa 1000
550
Tensile Strength: Yield (Proof), MPa 910
230

Thermal Properties

Latent Heat of Fusion, J/g 410
310
Maximum Temperature: Mechanical, °C 330
1050
Melting Completion (Liquidus), °C 1620
1390
Melting Onset (Solidus), °C 1570
1340
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 8.0
12
Thermal Expansion, µm/m-K 9.3
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 36
32
Density, g/cm3 4.5
8.0
Embodied Carbon, kg CO2/kg material 35
5.4
Embodied Energy, MJ/kg 560
77
Embodied Water, L/kg 160
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
150
Resilience: Unit (Modulus of Resilience), kJ/m3 3840
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 62
19
Strength to Weight: Bending, points 49
18
Thermal Diffusivity, mm2/s 3.2
3.1
Thermal Shock Resistance, points 72
13

Alloy Composition

Aluminum (Al), % 3.5 to 4.5
0
Carbon (C), % 0 to 0.080
0 to 0.080
Chromium (Cr), % 0
17 to 20
Copper (Cu), % 0
0 to 1.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 1.2 to 1.8
38.3 to 48.3
Lead (Pb), % 0
0 to 0.0050
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
34 to 37
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0.2 to 0.3
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0.75 to 1.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0
0 to 0.025
Titanium (Ti), % 89.9 to 93.1
0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0