MakeItFrom.com
Menu (ESC)

Grade 38 Titanium vs. S13800 Stainless Steel

Grade 38 titanium belongs to the titanium alloys classification, while S13800 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 38 titanium and the bottom bar is S13800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11
11 to 18
Fatigue Strength, MPa 530
410 to 870
Poisson's Ratio 0.32
0.28
Reduction in Area, % 29
39 to 62
Shear Modulus, GPa 40
77
Shear Strength, MPa 600
610 to 1030
Tensile Strength: Ultimate (UTS), MPa 1000
980 to 1730
Tensile Strength: Yield (Proof), MPa 910
660 to 1580

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Maximum Temperature: Mechanical, °C 330
810
Melting Completion (Liquidus), °C 1620
1450
Melting Onset (Solidus), °C 1570
1410
Specific Heat Capacity, J/kg-K 550
470
Thermal Conductivity, W/m-K 8.0
16
Thermal Expansion, µm/m-K 9.3
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 36
15
Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 35
3.4
Embodied Energy, MJ/kg 560
46
Embodied Water, L/kg 160
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
150 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 3840
1090 to 5490
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 62
35 to 61
Strength to Weight: Bending, points 49
28 to 41
Thermal Diffusivity, mm2/s 3.2
4.3
Thermal Shock Resistance, points 72
33 to 58

Alloy Composition

Aluminum (Al), % 3.5 to 4.5
0.9 to 1.4
Carbon (C), % 0 to 0.080
0 to 0.050
Chromium (Cr), % 0
12.3 to 13.2
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 1.2 to 1.8
73.6 to 77.3
Manganese (Mn), % 0
0 to 0.2
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
7.5 to 8.5
Nitrogen (N), % 0 to 0.030
0 to 0.010
Oxygen (O), % 0.2 to 0.3
0
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0
0 to 0.0080
Titanium (Ti), % 89.9 to 93.1
0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0