MakeItFrom.com
Menu (ESC)

Grade 38 Titanium vs. S41003 Stainless Steel

Grade 38 titanium belongs to the titanium alloys classification, while S41003 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 38 titanium and the bottom bar is S41003 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 11
21
Fatigue Strength, MPa 530
200
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
76
Shear Strength, MPa 600
320
Tensile Strength: Ultimate (UTS), MPa 1000
520
Tensile Strength: Yield (Proof), MPa 910
310

Thermal Properties

Latent Heat of Fusion, J/g 410
270
Maximum Temperature: Mechanical, °C 330
720
Melting Completion (Liquidus), °C 1620
1440
Melting Onset (Solidus), °C 1570
1400
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 8.0
27
Thermal Expansion, µm/m-K 9.3
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 36
7.0
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 35
1.9
Embodied Energy, MJ/kg 560
27
Embodied Water, L/kg 160
97

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
92
Resilience: Unit (Modulus of Resilience), kJ/m3 3840
240
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 62
19
Strength to Weight: Bending, points 49
18
Thermal Diffusivity, mm2/s 3.2
7.2
Thermal Shock Resistance, points 72
19

Alloy Composition

Aluminum (Al), % 3.5 to 4.5
0
Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 0
10.5 to 12.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 1.2 to 1.8
83.4 to 89.5
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0
0 to 1.5
Nitrogen (N), % 0 to 0.030
0 to 0.030
Oxygen (O), % 0.2 to 0.3
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 89.9 to 93.1
0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0