MakeItFrom.com
Menu (ESC)

Grade 38 Titanium vs. S43940 Stainless Steel

Grade 38 titanium belongs to the titanium alloys classification, while S43940 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 38 titanium and the bottom bar is S43940 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11
21
Fatigue Strength, MPa 530
180
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
77
Shear Strength, MPa 600
310
Tensile Strength: Ultimate (UTS), MPa 1000
490
Tensile Strength: Yield (Proof), MPa 910
280

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Maximum Temperature: Mechanical, °C 330
890
Melting Completion (Liquidus), °C 1620
1440
Melting Onset (Solidus), °C 1570
1400
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 8.0
25
Thermal Expansion, µm/m-K 9.3
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 36
12
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 35
2.6
Embodied Energy, MJ/kg 560
38
Embodied Water, L/kg 160
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
86
Resilience: Unit (Modulus of Resilience), kJ/m3 3840
200
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 62
18
Strength to Weight: Bending, points 49
18
Thermal Diffusivity, mm2/s 3.2
6.8
Thermal Shock Resistance, points 72
18

Alloy Composition

Aluminum (Al), % 3.5 to 4.5
0
Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 0
17.5 to 18.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 1.2 to 1.8
78.2 to 82.1
Manganese (Mn), % 0
0 to 1.0
Niobium (Nb), % 0
0.3 to 0.6
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0.2 to 0.3
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 89.9 to 93.1
0.1 to 0.6
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0