MakeItFrom.com
Menu (ESC)

Grade 38 Titanium vs. S44635 Stainless Steel

Grade 38 titanium belongs to the titanium alloys classification, while S44635 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 38 titanium and the bottom bar is S44635 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 11
23
Fatigue Strength, MPa 530
390
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 40
81
Shear Strength, MPa 600
450
Tensile Strength: Ultimate (UTS), MPa 1000
710
Tensile Strength: Yield (Proof), MPa 910
580

Thermal Properties

Latent Heat of Fusion, J/g 410
300
Maximum Temperature: Mechanical, °C 330
1100
Melting Completion (Liquidus), °C 1620
1460
Melting Onset (Solidus), °C 1570
1420
Specific Heat Capacity, J/kg-K 550
470
Thermal Conductivity, W/m-K 8.0
16
Thermal Expansion, µm/m-K 9.3
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 36
22
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 35
4.4
Embodied Energy, MJ/kg 560
62
Embodied Water, L/kg 160
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
150
Resilience: Unit (Modulus of Resilience), kJ/m3 3840
810
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 62
25
Strength to Weight: Bending, points 49
23
Thermal Diffusivity, mm2/s 3.2
4.4
Thermal Shock Resistance, points 72
23

Alloy Composition

Aluminum (Al), % 3.5 to 4.5
0
Carbon (C), % 0 to 0.080
0 to 0.025
Chromium (Cr), % 0
24.5 to 26
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 1.2 to 1.8
61.5 to 68.5
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
3.5 to 4.5
Nickel (Ni), % 0
3.5 to 4.5
Niobium (Nb), % 0
0.2 to 0.8
Nitrogen (N), % 0 to 0.030
0 to 0.035
Oxygen (O), % 0.2 to 0.3
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 89.9 to 93.1
0.2 to 0.8
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0