MakeItFrom.com
Menu (ESC)

Grade 4 Titanium vs. ACI-ASTM CG8M Steel

Grade 4 titanium belongs to the titanium alloys classification, while ACI-ASTM CG8M steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 4 titanium and the bottom bar is ACI-ASTM CG8M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
180
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 17
45
Fatigue Strength, MPa 340
280
Impact Strength: V-Notched Charpy, J 23
110
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
79
Tensile Strength: Ultimate (UTS), MPa 640
550
Tensile Strength: Yield (Proof), MPa 530
300

Thermal Properties

Latent Heat of Fusion, J/g 420
300
Maximum Temperature: Mechanical, °C 320
1020
Melting Completion (Liquidus), °C 1660
1450
Melting Onset (Solidus), °C 1610
1400
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 19
16
Thermal Expansion, µm/m-K 9.4
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.1
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 6.3
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 37
20
Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 31
4.1
Embodied Energy, MJ/kg 500
56
Embodied Water, L/kg 110
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
210
Resilience: Unit (Modulus of Resilience), kJ/m3 1330
220
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 40
19
Strength to Weight: Bending, points 37
19
Thermal Diffusivity, mm2/s 7.6
4.3
Thermal Shock Resistance, points 46
12

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.080
Chromium (Cr), % 0
18 to 21
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.5
58.8 to 70
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0
9.0 to 13
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.4
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 98.6 to 100
0
Residuals, % 0 to 0.4
0