MakeItFrom.com
Menu (ESC)

Grade 4 Titanium vs. AISI 202 Stainless Steel

Grade 4 titanium belongs to the titanium alloys classification, while AISI 202 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 4 titanium and the bottom bar is AISI 202 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
210 to 300
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 17
14 to 45
Fatigue Strength, MPa 340
290 to 330
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
77
Shear Strength, MPa 390
490 to 590
Tensile Strength: Ultimate (UTS), MPa 640
700 to 980
Tensile Strength: Yield (Proof), MPa 530
310 to 580

Thermal Properties

Latent Heat of Fusion, J/g 420
290
Maximum Temperature: Mechanical, °C 320
910
Melting Completion (Liquidus), °C 1660
1400
Melting Onset (Solidus), °C 1610
1360
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 19
15
Thermal Expansion, µm/m-K 9.4
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.1
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 6.3
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 37
13
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 31
2.8
Embodied Energy, MJ/kg 500
40
Embodied Water, L/kg 110
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
120 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 1330
250 to 840
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 40
25 to 35
Strength to Weight: Bending, points 37
23 to 29
Thermal Diffusivity, mm2/s 7.6
4.0
Thermal Shock Resistance, points 46
15 to 21

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.15
Chromium (Cr), % 0
17 to 19
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.5
63.5 to 71.5
Manganese (Mn), % 0
7.5 to 10
Nickel (Ni), % 0
4.0 to 6.0
Nitrogen (N), % 0 to 0.050
0 to 0.25
Oxygen (O), % 0 to 0.4
0
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 98.6 to 100
0
Residuals, % 0 to 0.4
0