MakeItFrom.com
Menu (ESC)

Grade 4 Titanium vs. AISI 440C Stainless Steel

Grade 4 titanium belongs to the titanium alloys classification, while AISI 440C stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade 4 titanium and the bottom bar is AISI 440C stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 17
2.0 to 14
Fatigue Strength, MPa 340
260 to 840
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
76
Shear Strength, MPa 390
430 to 1120
Tensile Strength: Ultimate (UTS), MPa 640
710 to 1970
Tensile Strength: Yield (Proof), MPa 530
450 to 1900

Thermal Properties

Latent Heat of Fusion, J/g 420
280
Maximum Temperature: Mechanical, °C 320
870
Melting Completion (Liquidus), °C 1660
1480
Melting Onset (Solidus), °C 1610
1370
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 19
22
Thermal Expansion, µm/m-K 9.4
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.1
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 6.3
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 37
9.0
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 31
2.2
Embodied Energy, MJ/kg 500
31
Embodied Water, L/kg 110
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
39 to 88
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 40
26 to 71
Strength to Weight: Bending, points 37
23 to 46
Thermal Diffusivity, mm2/s 7.6
6.0
Thermal Shock Resistance, points 46
26 to 71

Alloy Composition

Carbon (C), % 0 to 0.080
1.0 to 1.2
Chromium (Cr), % 0
16 to 18
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.5
78 to 83.1
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.4
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 98.6 to 100
0
Residuals, % 0 to 0.4
0