MakeItFrom.com
Menu (ESC)

Grade 4 Titanium vs. ASTM A372 Grade H Steel

Grade 4 titanium belongs to the titanium alloys classification, while ASTM A372 grade H steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 4 titanium and the bottom bar is ASTM A372 grade H steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
200 to 280
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 17
20 to 22
Fatigue Strength, MPa 340
310 to 380
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 41
73
Shear Strength, MPa 390
410 to 570
Tensile Strength: Ultimate (UTS), MPa 640
650 to 910
Tensile Strength: Yield (Proof), MPa 530
430 to 550

Thermal Properties

Latent Heat of Fusion, J/g 420
250
Maximum Temperature: Mechanical, °C 320
410
Melting Completion (Liquidus), °C 1660
1460
Melting Onset (Solidus), °C 1610
1420
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 19
45
Thermal Expansion, µm/m-K 9.4
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.1
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 6.3
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 37
2.3
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 31
1.5
Embodied Energy, MJ/kg 500
20
Embodied Water, L/kg 110
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
130 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 1330
500 to 810
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 40
23 to 32
Strength to Weight: Bending, points 37
21 to 27
Thermal Diffusivity, mm2/s 7.6
12
Thermal Shock Resistance, points 46
19 to 27

Alloy Composition

Carbon (C), % 0 to 0.080
0.3 to 0.4
Chromium (Cr), % 0
0.4 to 0.65
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.5
97.3 to 98.3
Manganese (Mn), % 0
0.75 to 1.1
Molybdenum (Mo), % 0
0.15 to 0.25
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.4
0
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0
0.15 to 0.35
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 98.6 to 100
0
Residuals, % 0 to 0.4
0