MakeItFrom.com
Menu (ESC)

Grade 4 Titanium vs. EN 1.4020 Stainless Steel

Grade 4 titanium belongs to the titanium alloys classification, while EN 1.4020 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is grade 4 titanium and the bottom bar is EN 1.4020 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
190 to 340
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 17
13 to 34
Fatigue Strength, MPa 340
340 to 540
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
77
Shear Strength, MPa 390
510 to 680
Tensile Strength: Ultimate (UTS), MPa 640
770 to 1130
Tensile Strength: Yield (Proof), MPa 530
430 to 950

Thermal Properties

Latent Heat of Fusion, J/g 420
280
Maximum Temperature: Mechanical, °C 320
890
Melting Completion (Liquidus), °C 1660
1390
Melting Onset (Solidus), °C 1610
1350
Specific Heat Capacity, J/kg-K 540
480
Thermal Expansion, µm/m-K 9.4
17

Otherwise Unclassified Properties

Base Metal Price, % relative 37
11
Density, g/cm3 4.5
7.6
Embodied Carbon, kg CO2/kg material 31
2.5
Embodied Energy, MJ/kg 500
37
Embodied Water, L/kg 110
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
140 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 1330
460 to 2290
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 40
28 to 41
Strength to Weight: Bending, points 37
25 to 32
Thermal Shock Resistance, points 46
16 to 23

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.15
Chromium (Cr), % 0
16.5 to 19
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.5
62.8 to 71.8
Manganese (Mn), % 0
11 to 14
Nickel (Ni), % 0
0.5 to 2.5
Nitrogen (N), % 0 to 0.050
0.2 to 0.45
Oxygen (O), % 0 to 0.4
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 98.6 to 100
0
Residuals, % 0 to 0.4
0