MakeItFrom.com
Menu (ESC)

Grade 4 Titanium vs. EN 1.4418 Stainless Steel

Grade 4 titanium belongs to the titanium alloys classification, while EN 1.4418 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 4 titanium and the bottom bar is EN 1.4418 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 17
16 to 20
Fatigue Strength, MPa 340
350 to 480
Impact Strength: V-Notched Charpy, J 23
62 to 90
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
77
Shear Strength, MPa 390
530 to 620
Tensile Strength: Ultimate (UTS), MPa 640
860 to 1000
Tensile Strength: Yield (Proof), MPa 530
540 to 790

Thermal Properties

Latent Heat of Fusion, J/g 420
280
Maximum Temperature: Mechanical, °C 320
870
Melting Completion (Liquidus), °C 1660
1450
Melting Onset (Solidus), °C 1610
1400
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 19
15
Thermal Expansion, µm/m-K 9.4
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.1
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 6.3
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 37
13
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 31
2.8
Embodied Energy, MJ/kg 500
39
Embodied Water, L/kg 110
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
130 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 1330
730 to 1590
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 40
31 to 36
Strength to Weight: Bending, points 37
26 to 28
Thermal Diffusivity, mm2/s 7.6
4.0
Thermal Shock Resistance, points 46
31 to 36

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.060
Chromium (Cr), % 0
15 to 17
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.5
73.2 to 80.2
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0.8 to 1.5
Nickel (Ni), % 0
4.0 to 6.0
Nitrogen (N), % 0 to 0.050
0 to 0.020
Oxygen (O), % 0 to 0.4
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.7
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 98.6 to 100
0
Residuals, % 0 to 0.4
0