MakeItFrom.com
Menu (ESC)

Grade 4 Titanium vs. CC480K Bronze

Grade 4 titanium belongs to the titanium alloys classification, while CC480K bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 4 titanium and the bottom bar is CC480K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
88
Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 17
13
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 41
41
Tensile Strength: Ultimate (UTS), MPa 640
300
Tensile Strength: Yield (Proof), MPa 530
180

Thermal Properties

Latent Heat of Fusion, J/g 420
190
Maximum Temperature: Mechanical, °C 320
170
Melting Completion (Liquidus), °C 1660
1010
Melting Onset (Solidus), °C 1610
900
Specific Heat Capacity, J/kg-K 540
370
Thermal Conductivity, W/m-K 19
63
Thermal Expansion, µm/m-K 9.4
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.1
11
Electrical Conductivity: Equal Weight (Specific), % IACS 6.3
11

Otherwise Unclassified Properties

Base Metal Price, % relative 37
35
Density, g/cm3 4.5
8.8
Embodied Carbon, kg CO2/kg material 31
3.7
Embodied Energy, MJ/kg 500
59
Embodied Water, L/kg 110
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
35
Resilience: Unit (Modulus of Resilience), kJ/m3 1330
140
Stiffness to Weight: Axial, points 13
6.9
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 40
9.6
Strength to Weight: Bending, points 37
11
Thermal Diffusivity, mm2/s 7.6
20
Thermal Shock Resistance, points 46
11

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
86 to 90
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.5
0 to 0.2
Lead (Pb), % 0
0 to 1.0
Manganese (Mn), % 0
0 to 0.1
Nickel (Ni), % 0
0 to 2.0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.4
0
Phosphorus (P), % 0
0 to 0.2
Silicon (Si), % 0
0 to 0.020
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
9.0 to 11
Titanium (Ti), % 98.6 to 100
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0 to 0.4
0