MakeItFrom.com
Menu (ESC)

Grade 4 Titanium vs. CC492K Bronze

Grade 4 titanium belongs to the titanium alloys classification, while CC492K bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 4 titanium and the bottom bar is CC492K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
78
Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 17
14
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 41
40
Tensile Strength: Ultimate (UTS), MPa 640
280
Tensile Strength: Yield (Proof), MPa 530
150

Thermal Properties

Latent Heat of Fusion, J/g 420
190
Maximum Temperature: Mechanical, °C 320
170
Melting Completion (Liquidus), °C 1660
1000
Melting Onset (Solidus), °C 1610
900
Specific Heat Capacity, J/kg-K 540
370
Thermal Conductivity, W/m-K 19
73
Thermal Expansion, µm/m-K 9.4
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.1
13
Electrical Conductivity: Equal Weight (Specific), % IACS 6.3
13

Otherwise Unclassified Properties

Base Metal Price, % relative 37
33
Density, g/cm3 4.5
8.8
Embodied Carbon, kg CO2/kg material 31
3.4
Embodied Energy, MJ/kg 500
54
Embodied Water, L/kg 110
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
33
Resilience: Unit (Modulus of Resilience), kJ/m3 1330
100
Stiffness to Weight: Axial, points 13
6.8
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 40
8.7
Strength to Weight: Bending, points 37
11
Thermal Diffusivity, mm2/s 7.6
23
Thermal Shock Resistance, points 46
10

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
83 to 89
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.5
0 to 0.2
Lead (Pb), % 0
2.5 to 3.5
Nickel (Ni), % 0
0 to 2.0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.4
0
Phosphorus (P), % 0
0 to 0.1
Silicon (Si), % 0
0 to 0.010
Sulfur (S), % 0
0 to 0.1
Tin (Sn), % 0
6.0 to 8.0
Titanium (Ti), % 98.6 to 100
0
Zinc (Zn), % 0
1.5 to 3.0
Residuals, % 0 to 0.4
0