MakeItFrom.com
Menu (ESC)

Grade 4 Titanium vs. CR008A Copper

Grade 4 titanium belongs to the titanium alloys classification, while CR008A copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 4 titanium and the bottom bar is CR008A copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 17
15
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 41
43
Tensile Strength: Ultimate (UTS), MPa 640
220
Tensile Strength: Yield (Proof), MPa 530
130

Thermal Properties

Latent Heat of Fusion, J/g 420
210
Maximum Temperature: Mechanical, °C 320
200
Melting Completion (Liquidus), °C 1660
1090
Melting Onset (Solidus), °C 1610
1040
Specific Heat Capacity, J/kg-K 540
390
Thermal Conductivity, W/m-K 19
380
Thermal Expansion, µm/m-K 9.4
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.1
100
Electrical Conductivity: Equal Weight (Specific), % IACS 6.3
100

Otherwise Unclassified Properties

Base Metal Price, % relative 37
31
Density, g/cm3 4.5
9.0
Embodied Carbon, kg CO2/kg material 31
2.6
Embodied Energy, MJ/kg 500
41
Embodied Water, L/kg 110
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
29
Resilience: Unit (Modulus of Resilience), kJ/m3 1330
76
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 40
6.8
Strength to Weight: Bending, points 37
9.0
Thermal Diffusivity, mm2/s 7.6
110
Thermal Shock Resistance, points 46
7.8

Alloy Composition

Bismuth (Bi), % 0
0 to 0.00050
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
99.95 to 100
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.5
0
Lead (Pb), % 0
0 to 0.0050
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.4
0
Silver (Ag), % 0
0 to 0.015
Titanium (Ti), % 98.6 to 100
0
Residuals, % 0 to 0.4
0