MakeItFrom.com
Menu (ESC)

Grade 4 Titanium vs. Grade N7M Nickel

Grade 4 titanium belongs to the titanium alloys classification, while grade N7M nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade 4 titanium and the bottom bar is grade N7M nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
220
Elongation at Break, % 17
22
Fatigue Strength, MPa 340
190
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 41
85
Tensile Strength: Ultimate (UTS), MPa 640
590
Tensile Strength: Yield (Proof), MPa 530
310

Thermal Properties

Latent Heat of Fusion, J/g 420
320
Maximum Temperature: Mechanical, °C 320
900
Melting Completion (Liquidus), °C 1660
1650
Melting Onset (Solidus), °C 1610
1590
Specific Heat Capacity, J/kg-K 540
390
Thermal Expansion, µm/m-K 9.4
9.9

Otherwise Unclassified Properties

Base Metal Price, % relative 37
75
Density, g/cm3 4.5
9.3
Embodied Carbon, kg CO2/kg material 31
16
Embodied Energy, MJ/kg 500
200
Embodied Water, L/kg 110
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
110
Resilience: Unit (Modulus of Resilience), kJ/m3 1330
220
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
22
Strength to Weight: Axial, points 40
18
Strength to Weight: Bending, points 37
17
Thermal Shock Resistance, points 46
19

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.070
Chromium (Cr), % 0
0 to 1.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.5
0 to 3.0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
30 to 33
Nickel (Ni), % 0
60.9 to 70
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.4
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 98.6 to 100
0
Residuals, % 0 to 0.4
0