MakeItFrom.com
Menu (ESC)

Grade 4 Titanium vs. Sintered 2014 Aluminum

Grade 4 titanium belongs to the titanium alloys classification, while sintered 2014 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 4 titanium and the bottom bar is sintered 2014 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
70
Elongation at Break, % 17
0.5 to 3.0
Fatigue Strength, MPa 340
52 to 100
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 41
26
Tensile Strength: Ultimate (UTS), MPa 640
140 to 290
Tensile Strength: Yield (Proof), MPa 530
97 to 280

Thermal Properties

Latent Heat of Fusion, J/g 420
390
Maximum Temperature: Mechanical, °C 320
170
Melting Completion (Liquidus), °C 1660
650
Melting Onset (Solidus), °C 1610
560
Specific Heat Capacity, J/kg-K 540
880
Thermal Conductivity, W/m-K 19
130
Thermal Expansion, µm/m-K 9.4
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.1
33
Electrical Conductivity: Equal Weight (Specific), % IACS 6.3
100

Otherwise Unclassified Properties

Base Metal Price, % relative 37
10
Density, g/cm3 4.5
2.9
Embodied Carbon, kg CO2/kg material 31
8.0
Embodied Energy, MJ/kg 500
150
Embodied Water, L/kg 110
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
1.0 to 5.7
Resilience: Unit (Modulus of Resilience), kJ/m3 1330
68 to 560
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
47
Strength to Weight: Axial, points 40
13 to 27
Strength to Weight: Bending, points 37
20 to 33
Thermal Diffusivity, mm2/s 7.6
51
Thermal Shock Resistance, points 46
6.2 to 13

Alloy Composition

Aluminum (Al), % 0
91.5 to 96.3
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
3.5 to 5.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.5
0
Magnesium (Mg), % 0
0.2 to 0.8
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.4
0
Silicon (Si), % 0
0 to 1.2
Titanium (Ti), % 98.6 to 100
0
Residuals, % 0
0 to 1.5