MakeItFrom.com
Menu (ESC)

Grade 4 Titanium vs. C34200 Brass

Grade 4 titanium belongs to the titanium alloys classification, while C34200 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade 4 titanium and the bottom bar is C34200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Elongation at Break, % 17
3.0 to 17
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 41
40
Shear Strength, MPa 390
230 to 360
Tensile Strength: Ultimate (UTS), MPa 640
370 to 650
Tensile Strength: Yield (Proof), MPa 530
150 to 420

Thermal Properties

Latent Heat of Fusion, J/g 420
170
Maximum Temperature: Mechanical, °C 320
120
Melting Completion (Liquidus), °C 1660
910
Melting Onset (Solidus), °C 1610
890
Specific Heat Capacity, J/kg-K 540
380
Thermal Conductivity, W/m-K 19
120
Thermal Expansion, µm/m-K 9.4
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.1
26
Electrical Conductivity: Equal Weight (Specific), % IACS 6.3
29

Otherwise Unclassified Properties

Base Metal Price, % relative 37
24
Density, g/cm3 4.5
8.2
Embodied Carbon, kg CO2/kg material 31
2.6
Embodied Energy, MJ/kg 500
45
Embodied Water, L/kg 110
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
9.0 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 1330
110 to 870
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 40
13 to 22
Strength to Weight: Bending, points 37
14 to 20
Thermal Diffusivity, mm2/s 7.6
37
Thermal Shock Resistance, points 46
12 to 22

Alloy Composition

Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
62 to 65
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.5
0 to 0.1
Lead (Pb), % 0
1.5 to 2.5
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.4
0
Titanium (Ti), % 98.6 to 100
0
Zinc (Zn), % 0
32 to 36.5
Residuals, % 0
0 to 0.4