MakeItFrom.com
Menu (ESC)

Grade 4 Titanium vs. S43940 Stainless Steel

Grade 4 titanium belongs to the titanium alloys classification, while S43940 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 4 titanium and the bottom bar is S43940 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
160
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 17
21
Fatigue Strength, MPa 340
180
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
77
Shear Strength, MPa 390
310
Tensile Strength: Ultimate (UTS), MPa 640
490
Tensile Strength: Yield (Proof), MPa 530
280

Thermal Properties

Latent Heat of Fusion, J/g 420
280
Maximum Temperature: Mechanical, °C 320
890
Melting Completion (Liquidus), °C 1660
1440
Melting Onset (Solidus), °C 1610
1400
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 19
25
Thermal Expansion, µm/m-K 9.4
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.1
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 6.3
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 37
12
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 31
2.6
Embodied Energy, MJ/kg 500
38
Embodied Water, L/kg 110
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
86
Resilience: Unit (Modulus of Resilience), kJ/m3 1330
200
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 40
18
Strength to Weight: Bending, points 37
18
Thermal Diffusivity, mm2/s 7.6
6.8
Thermal Shock Resistance, points 46
18

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 0
17.5 to 18.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.5
78.2 to 82.1
Manganese (Mn), % 0
0 to 1.0
Niobium (Nb), % 0
0.3 to 0.6
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.4
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 98.6 to 100
0.1 to 0.6
Residuals, % 0 to 0.4
0