MakeItFrom.com
Menu (ESC)

Grade 4 Titanium vs. S44625 Stainless Steel

Grade 4 titanium belongs to the titanium alloys classification, while S44625 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 4 titanium and the bottom bar is S44625 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 17
22
Fatigue Strength, MPa 340
240
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 41
80
Shear Strength, MPa 390
370
Tensile Strength: Ultimate (UTS), MPa 640
590
Tensile Strength: Yield (Proof), MPa 530
360

Thermal Properties

Latent Heat of Fusion, J/g 420
290
Maximum Temperature: Mechanical, °C 320
1100
Melting Completion (Liquidus), °C 1660
1440
Melting Onset (Solidus), °C 1610
1400
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 19
17
Thermal Expansion, µm/m-K 9.4
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.1
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 6.3
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 37
14
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 31
2.8
Embodied Energy, MJ/kg 500
39
Embodied Water, L/kg 110
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
110
Resilience: Unit (Modulus of Resilience), kJ/m3 1330
310
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 40
21
Strength to Weight: Bending, points 37
20
Thermal Diffusivity, mm2/s 7.6
4.6
Thermal Shock Resistance, points 46
19

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.010
Chromium (Cr), % 0
25 to 27.5
Copper (Cu), % 0
0 to 0.2
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.5
69.4 to 74.3
Manganese (Mn), % 0
0 to 0.4
Molybdenum (Mo), % 0
0.75 to 1.5
Nickel (Ni), % 0
0 to 0.5
Nitrogen (N), % 0 to 0.050
0 to 0.015
Oxygen (O), % 0 to 0.4
0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 98.6 to 100
0
Residuals, % 0 to 0.4
0