MakeItFrom.com
Menu (ESC)

Grade 4 Titanium vs. S44626 Stainless Steel

Grade 4 titanium belongs to the titanium alloys classification, while S44626 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 4 titanium and the bottom bar is S44626 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
190
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 17
23
Fatigue Strength, MPa 340
230
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 41
80
Shear Strength, MPa 390
340
Tensile Strength: Ultimate (UTS), MPa 640
540
Tensile Strength: Yield (Proof), MPa 530
350

Thermal Properties

Latent Heat of Fusion, J/g 420
300
Maximum Temperature: Mechanical, °C 320
1100
Melting Completion (Liquidus), °C 1660
1440
Melting Onset (Solidus), °C 1610
1390
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 19
17
Thermal Expansion, µm/m-K 9.4
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.1
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 6.3
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 37
14
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 31
2.9
Embodied Energy, MJ/kg 500
42
Embodied Water, L/kg 110
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
110
Resilience: Unit (Modulus of Resilience), kJ/m3 1330
300
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 35
26
Strength to Weight: Axial, points 40
19
Strength to Weight: Bending, points 37
19
Thermal Diffusivity, mm2/s 7.6
4.6
Thermal Shock Resistance, points 46
18

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.060
Chromium (Cr), % 0
25 to 27
Copper (Cu), % 0
0 to 0.2
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.5
68.1 to 74.1
Manganese (Mn), % 0
0 to 0.75
Molybdenum (Mo), % 0
0.75 to 1.5
Nickel (Ni), % 0
0 to 0.5
Nitrogen (N), % 0 to 0.050
0 to 0.040
Oxygen (O), % 0 to 0.4
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 98.6 to 100
0.2 to 1.0
Residuals, % 0 to 0.4
0