MakeItFrom.com
Menu (ESC)

Grade 4 Titanium vs. S82031 Stainless Steel

Grade 4 titanium belongs to the titanium alloys classification, while S82031 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade 4 titanium and the bottom bar is S82031 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 17
39
Fatigue Strength, MPa 340
490
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
78
Shear Strength, MPa 390
540
Tensile Strength: Ultimate (UTS), MPa 640
780
Tensile Strength: Yield (Proof), MPa 530
570

Thermal Properties

Latent Heat of Fusion, J/g 420
290
Maximum Temperature: Mechanical, °C 320
980
Melting Completion (Liquidus), °C 1660
1430
Melting Onset (Solidus), °C 1610
1390
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 19
15
Thermal Expansion, µm/m-K 9.4
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.1
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 6.3
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 37
13
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 31
2.8
Embodied Energy, MJ/kg 500
39
Embodied Water, L/kg 110
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
280
Resilience: Unit (Modulus of Resilience), kJ/m3 1330
820
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 40
28
Strength to Weight: Bending, points 37
24
Thermal Diffusivity, mm2/s 7.6
3.9
Thermal Shock Resistance, points 46
22

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.050
Chromium (Cr), % 0
19 to 22
Copper (Cu), % 0
0 to 1.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.5
68 to 78.3
Manganese (Mn), % 0
0 to 2.5
Molybdenum (Mo), % 0
0.6 to 1.4
Nickel (Ni), % 0
2.0 to 4.0
Nitrogen (N), % 0 to 0.050
0.14 to 0.24
Oxygen (O), % 0 to 0.4
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.8
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 98.6 to 100
0
Residuals, % 0 to 0.4
0