MakeItFrom.com
Menu (ESC)

Grade 6 Titanium vs. 3203 Aluminum

Grade 6 titanium belongs to the titanium alloys classification, while 3203 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is grade 6 titanium and the bottom bar is 3203 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
70
Elongation at Break, % 11
4.5 to 29
Fatigue Strength, MPa 290
46 to 92
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 39
26
Shear Strength, MPa 530
72 to 120
Tensile Strength: Ultimate (UTS), MPa 890
110 to 200
Tensile Strength: Yield (Proof), MPa 840
39 to 190

Thermal Properties

Latent Heat of Fusion, J/g 410
400
Maximum Temperature: Mechanical, °C 310
180
Melting Completion (Liquidus), °C 1580
650
Melting Onset (Solidus), °C 1530
620
Specific Heat Capacity, J/kg-K 550
900
Thermal Conductivity, W/m-K 7.8
170
Thermal Expansion, µm/m-K 9.4
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
43
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
140

Otherwise Unclassified Properties

Base Metal Price, % relative 36
9.0
Density, g/cm3 4.5
2.8
Embodied Carbon, kg CO2/kg material 30
8.1
Embodied Energy, MJ/kg 480
150
Embodied Water, L/kg 190
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
8.0 to 25
Resilience: Unit (Modulus of Resilience), kJ/m3 3390
11 to 250
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
50
Strength to Weight: Axial, points 55
11 to 20
Strength to Weight: Bending, points 46
19 to 28
Thermal Diffusivity, mm2/s 3.2
70
Thermal Shock Resistance, points 65
4.9 to 8.8

Alloy Composition

Aluminum (Al), % 4.0 to 6.0
96.9 to 99
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
0 to 0.050
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.5
0 to 0.7
Manganese (Mn), % 0
1.0 to 1.5
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.2
0
Silicon (Si), % 0
0 to 0.6
Tin (Sn), % 2.0 to 3.0
0
Titanium (Ti), % 89.8 to 94
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15