MakeItFrom.com
Menu (ESC)

Grade 6 Titanium vs. 5083 Aluminum

Grade 6 titanium belongs to the titanium alloys classification, while 5083 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 6 titanium and the bottom bar is 5083 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
68
Elongation at Break, % 11
1.1 to 17
Fatigue Strength, MPa 290
93 to 190
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 39
26
Shear Strength, MPa 530
170 to 220
Tensile Strength: Ultimate (UTS), MPa 890
290 to 390
Tensile Strength: Yield (Proof), MPa 840
110 to 340

Thermal Properties

Latent Heat of Fusion, J/g 410
400
Maximum Temperature: Mechanical, °C 310
190
Melting Completion (Liquidus), °C 1580
640
Melting Onset (Solidus), °C 1530
580
Specific Heat Capacity, J/kg-K 550
900
Thermal Conductivity, W/m-K 7.8
120
Thermal Expansion, µm/m-K 9.4
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
29
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
96

Otherwise Unclassified Properties

Base Metal Price, % relative 36
9.5
Density, g/cm3 4.5
2.7
Embodied Carbon, kg CO2/kg material 30
8.9
Embodied Energy, MJ/kg 480
150
Embodied Water, L/kg 190
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
4.2 to 42
Resilience: Unit (Modulus of Resilience), kJ/m3 3390
95 to 860
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
50
Strength to Weight: Axial, points 55
29 to 40
Strength to Weight: Bending, points 46
36 to 44
Thermal Diffusivity, mm2/s 3.2
48
Thermal Shock Resistance, points 65
12 to 17

Alloy Composition

Aluminum (Al), % 4.0 to 6.0
92.4 to 95.6
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 0
0.050 to 0.25
Copper (Cu), % 0
0 to 0.1
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.5
0 to 0.4
Magnesium (Mg), % 0
4.0 to 4.9
Manganese (Mn), % 0
0.4 to 1.0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.2
0
Silicon (Si), % 0
0 to 0.4
Tin (Sn), % 2.0 to 3.0
0
Titanium (Ti), % 89.8 to 94
0 to 0.15
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15