MakeItFrom.com
Menu (ESC)

Grade 6 Titanium vs. AWS ER70S-B2L

Grade 6 titanium belongs to the titanium alloys classification, while AWS ER70S-B2L belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 6 titanium and the bottom bar is AWS ER70S-B2L.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 11
22
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 39
73
Tensile Strength: Ultimate (UTS), MPa 890
590
Tensile Strength: Yield (Proof), MPa 840
450

Thermal Properties

Latent Heat of Fusion, J/g 410
260
Melting Completion (Liquidus), °C 1580
1460
Melting Onset (Solidus), °C 1530
1420
Specific Heat Capacity, J/kg-K 550
470
Thermal Conductivity, W/m-K 7.8
40
Thermal Expansion, µm/m-K 9.4
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 36
3.0
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 30
1.6
Embodied Energy, MJ/kg 480
21
Embodied Water, L/kg 190
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
120
Resilience: Unit (Modulus of Resilience), kJ/m3 3390
530
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 55
21
Strength to Weight: Bending, points 46
20
Thermal Diffusivity, mm2/s 3.2
11
Thermal Shock Resistance, points 65
17

Alloy Composition

Aluminum (Al), % 4.0 to 6.0
0
Carbon (C), % 0 to 0.080
0 to 0.050
Chromium (Cr), % 0
1.2 to 1.5
Copper (Cu), % 0
0 to 0.35
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.5
95.3 to 97.6
Manganese (Mn), % 0
0.4 to 0.7
Molybdenum (Mo), % 0
0.4 to 0.65
Nickel (Ni), % 0
0 to 0.2
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0.4 to 0.7
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 2.0 to 3.0
0
Titanium (Ti), % 89.8 to 94
0
Residuals, % 0
0 to 0.5