MakeItFrom.com
Menu (ESC)

Grade 6 Titanium vs. EN 1.0303 Steel

Grade 6 titanium belongs to the titanium alloys classification, while EN 1.0303 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is grade 6 titanium and the bottom bar is EN 1.0303 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 11
12 to 25
Fatigue Strength, MPa 290
150 to 230
Poisson's Ratio 0.32
0.29
Reduction in Area, % 27
75 to 86
Shear Modulus, GPa 39
73
Shear Strength, MPa 530
220 to 260
Tensile Strength: Ultimate (UTS), MPa 890
290 to 410
Tensile Strength: Yield (Proof), MPa 840
200 to 320

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 310
400
Melting Completion (Liquidus), °C 1580
1470
Melting Onset (Solidus), °C 1530
1430
Specific Heat Capacity, J/kg-K 550
470
Thermal Conductivity, W/m-K 7.8
53
Thermal Expansion, µm/m-K 9.4
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
7.9

Otherwise Unclassified Properties

Base Metal Price, % relative 36
1.8
Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 30
1.4
Embodied Energy, MJ/kg 480
18
Embodied Water, L/kg 190
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
30 to 94
Resilience: Unit (Modulus of Resilience), kJ/m3 3390
110 to 270
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 55
10 to 15
Strength to Weight: Bending, points 46
12 to 16
Thermal Diffusivity, mm2/s 3.2
14
Thermal Shock Resistance, points 65
9.2 to 13

Alloy Composition

Aluminum (Al), % 4.0 to 6.0
0.020 to 0.060
Carbon (C), % 0 to 0.080
0.020 to 0.060
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.5
99.335 to 99.71
Manganese (Mn), % 0
0.25 to 0.4
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 2.0 to 3.0
0
Titanium (Ti), % 89.8 to 94
0
Residuals, % 0 to 0.4
0