MakeItFrom.com
Menu (ESC)

Grade 6 Titanium vs. EN 1.4419 Stainless Steel

Grade 6 titanium belongs to the titanium alloys classification, while EN 1.4419 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 6 titanium and the bottom bar is EN 1.4419 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 11
11 to 17
Fatigue Strength, MPa 290
230 to 680
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 39
76
Shear Strength, MPa 530
410 to 950
Tensile Strength: Ultimate (UTS), MPa 890
660 to 1590
Tensile Strength: Yield (Proof), MPa 840
370 to 1240

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Maximum Temperature: Mechanical, °C 310
790
Melting Completion (Liquidus), °C 1580
1440
Melting Onset (Solidus), °C 1530
1400
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 7.8
30
Thermal Expansion, µm/m-K 9.4
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 36
8.0
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 30
2.2
Embodied Energy, MJ/kg 480
30
Embodied Water, L/kg 190
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
95 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 3390
350 to 3920
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 55
24 to 57
Strength to Weight: Bending, points 46
22 to 39
Thermal Diffusivity, mm2/s 3.2
8.1
Thermal Shock Resistance, points 65
23 to 55

Alloy Composition

Aluminum (Al), % 4.0 to 6.0
0
Carbon (C), % 0 to 0.080
0.36 to 0.42
Chromium (Cr), % 0
13 to 14.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.5
82 to 86
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0.6 to 1.0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 2.0 to 3.0
0
Titanium (Ti), % 89.8 to 94
0
Residuals, % 0 to 0.4
0