MakeItFrom.com
Menu (ESC)

Grade 6 Titanium vs. EN 1.4477 Stainless Steel

Grade 6 titanium belongs to the titanium alloys classification, while EN 1.4477 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 6 titanium and the bottom bar is EN 1.4477 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
210
Elongation at Break, % 11
22 to 23
Fatigue Strength, MPa 290
420 to 490
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 39
81
Shear Strength, MPa 530
550 to 580
Tensile Strength: Ultimate (UTS), MPa 890
880 to 930
Tensile Strength: Yield (Proof), MPa 840
620 to 730

Thermal Properties

Latent Heat of Fusion, J/g 410
300
Maximum Temperature: Mechanical, °C 310
1100
Melting Completion (Liquidus), °C 1580
1430
Melting Onset (Solidus), °C 1530
1380
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 7.8
13
Thermal Expansion, µm/m-K 9.4
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 36
20
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 30
3.7
Embodied Energy, MJ/kg 480
52
Embodied Water, L/kg 190
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
180 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 3390
940 to 1290
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 55
31 to 33
Strength to Weight: Bending, points 46
26 to 27
Thermal Diffusivity, mm2/s 3.2
3.5
Thermal Shock Resistance, points 65
23 to 25

Alloy Composition

Aluminum (Al), % 4.0 to 6.0
0
Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 0
28 to 30
Copper (Cu), % 0
0 to 0.8
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.5
56.6 to 63.6
Manganese (Mn), % 0
0.8 to 1.5
Molybdenum (Mo), % 0
1.5 to 2.6
Nickel (Ni), % 0
5.8 to 7.5
Nitrogen (N), % 0 to 0.030
0.3 to 0.4
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 2.0 to 3.0
0
Titanium (Ti), % 89.8 to 94
0
Residuals, % 0 to 0.4
0