MakeItFrom.com
Menu (ESC)

Grade 6 Titanium vs. CC493K Bronze

Grade 6 titanium belongs to the titanium alloys classification, while CC493K bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 6 titanium and the bottom bar is CC493K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
100
Elongation at Break, % 11
14
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 39
39
Tensile Strength: Ultimate (UTS), MPa 890
270
Tensile Strength: Yield (Proof), MPa 840
140

Thermal Properties

Latent Heat of Fusion, J/g 410
180
Maximum Temperature: Mechanical, °C 310
160
Melting Completion (Liquidus), °C 1580
960
Melting Onset (Solidus), °C 1530
880
Specific Heat Capacity, J/kg-K 550
360
Thermal Conductivity, W/m-K 7.8
61
Thermal Expansion, µm/m-K 9.4
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
12
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
12

Otherwise Unclassified Properties

Base Metal Price, % relative 36
32
Density, g/cm3 4.5
8.9
Embodied Carbon, kg CO2/kg material 30
3.3
Embodied Energy, MJ/kg 480
53
Embodied Water, L/kg 190
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
33
Resilience: Unit (Modulus of Resilience), kJ/m3 3390
89
Stiffness to Weight: Axial, points 13
6.5
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 55
8.6
Strength to Weight: Bending, points 46
11
Thermal Diffusivity, mm2/s 3.2
19
Thermal Shock Resistance, points 65
10

Alloy Composition

Aluminum (Al), % 4.0 to 6.0
0 to 0.010
Antimony (Sb), % 0
0 to 0.3
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
79 to 86
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.5
0 to 0.2
Lead (Pb), % 0
5.0 to 8.0
Nickel (Ni), % 0
0 to 2.0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.1
Silicon (Si), % 0
0 to 0.010
Sulfur (S), % 0
0 to 0.1
Tin (Sn), % 2.0 to 3.0
5.2 to 8.0
Titanium (Ti), % 89.8 to 94
0
Zinc (Zn), % 0
2.0 to 5.0
Residuals, % 0 to 0.4
0