MakeItFrom.com
Menu (ESC)

Grade 6 Titanium vs. SAE-AISI 1010 Steel

Grade 6 titanium belongs to the titanium alloys classification, while SAE-AISI 1010 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is grade 6 titanium and the bottom bar is SAE-AISI 1010 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 11
22 to 31
Fatigue Strength, MPa 290
150 to 230
Poisson's Ratio 0.32
0.29
Reduction in Area, % 27
46 to 56
Shear Modulus, GPa 39
73
Shear Strength, MPa 530
230 to 250
Tensile Strength: Ultimate (UTS), MPa 890
350 to 400
Tensile Strength: Yield (Proof), MPa 840
190 to 330

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 310
400
Melting Completion (Liquidus), °C 1580
1470
Melting Onset (Solidus), °C 1530
1430
Specific Heat Capacity, J/kg-K 550
470
Thermal Conductivity, W/m-K 7.8
47
Thermal Expansion, µm/m-K 9.4
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
12
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
14

Otherwise Unclassified Properties

Base Metal Price, % relative 36
1.8
Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 30
1.4
Embodied Energy, MJ/kg 480
18
Embodied Water, L/kg 190
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
82 to 93
Resilience: Unit (Modulus of Resilience), kJ/m3 3390
100 to 290
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 55
12 to 14
Strength to Weight: Bending, points 46
14 to 15
Thermal Diffusivity, mm2/s 3.2
13
Thermal Shock Resistance, points 65
11 to 13

Alloy Composition

Aluminum (Al), % 4.0 to 6.0
0
Carbon (C), % 0 to 0.080
0.080 to 0.13
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.5
99.18 to 99.62
Manganese (Mn), % 0
0.3 to 0.6
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.040
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 2.0 to 3.0
0
Titanium (Ti), % 89.8 to 94
0
Residuals, % 0 to 0.4
0