MakeItFrom.com
Menu (ESC)

Grade 6 Titanium vs. C17300 Copper

Grade 6 titanium belongs to the titanium alloys classification, while C17300 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 6 titanium and the bottom bar is C17300 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
120
Elongation at Break, % 11
3.0 to 23
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 39
45
Shear Strength, MPa 530
320 to 790
Tensile Strength: Ultimate (UTS), MPa 890
500 to 1380
Tensile Strength: Yield (Proof), MPa 840
160 to 1200

Thermal Properties

Latent Heat of Fusion, J/g 410
230
Maximum Temperature: Mechanical, °C 310
270
Melting Completion (Liquidus), °C 1580
980
Melting Onset (Solidus), °C 1530
870
Specific Heat Capacity, J/kg-K 550
380
Thermal Conductivity, W/m-K 7.8
110
Thermal Expansion, µm/m-K 9.4
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
22
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
23

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.8
Embodied Carbon, kg CO2/kg material 30
9.4
Embodied Energy, MJ/kg 480
150
Embodied Water, L/kg 190
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
40 to 88
Resilience: Unit (Modulus of Resilience), kJ/m3 3390
110 to 5410
Stiffness to Weight: Axial, points 13
7.6
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 55
16 to 44
Strength to Weight: Bending, points 46
16 to 31
Thermal Diffusivity, mm2/s 3.2
32
Thermal Shock Resistance, points 65
17 to 48

Alloy Composition

Aluminum (Al), % 4.0 to 6.0
0 to 0.2
Beryllium (Be), % 0
1.8 to 2.0
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
95.5 to 97.8
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.5
0 to 0.4
Lead (Pb), % 0
0.2 to 0.6
Nickel (Ni), % 0
0.2 to 0.6
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.2
0
Silicon (Si), % 0
0 to 0.2
Tin (Sn), % 2.0 to 3.0
0
Titanium (Ti), % 89.8 to 94
0
Residuals, % 0
0 to 0.5