MakeItFrom.com
Menu (ESC)

Grade 6 Titanium vs. C82000 Copper

Grade 6 titanium belongs to the titanium alloys classification, while C82000 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 6 titanium and the bottom bar is C82000 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
120
Elongation at Break, % 11
8.0 to 20
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 39
45
Tensile Strength: Ultimate (UTS), MPa 890
350 to 690
Tensile Strength: Yield (Proof), MPa 840
140 to 520

Thermal Properties

Latent Heat of Fusion, J/g 410
220
Maximum Temperature: Mechanical, °C 310
220
Melting Completion (Liquidus), °C 1580
1090
Melting Onset (Solidus), °C 1530
970
Specific Heat Capacity, J/kg-K 550
390
Thermal Conductivity, W/m-K 7.8
260
Thermal Expansion, µm/m-K 9.4
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
45
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
46

Otherwise Unclassified Properties

Base Metal Price, % relative 36
60
Density, g/cm3 4.5
8.9
Embodied Carbon, kg CO2/kg material 30
5.0
Embodied Energy, MJ/kg 480
77
Embodied Water, L/kg 190
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
51 to 55
Resilience: Unit (Modulus of Resilience), kJ/m3 3390
80 to 1120
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 55
11 to 22
Strength to Weight: Bending, points 46
12 to 20
Thermal Diffusivity, mm2/s 3.2
76
Thermal Shock Resistance, points 65
12 to 24

Alloy Composition

Aluminum (Al), % 4.0 to 6.0
0 to 0.1
Beryllium (Be), % 0
0.45 to 0.8
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 0
0 to 0.1
Cobalt (Co), % 0
2.2 to 2.7
Copper (Cu), % 0
95.2 to 97.4
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.5
0 to 0.1
Lead (Pb), % 0
0 to 0.020
Nickel (Ni), % 0
0 to 0.2
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.2
0
Silicon (Si), % 0
0 to 0.15
Tin (Sn), % 2.0 to 3.0
0 to 0.1
Titanium (Ti), % 89.8 to 94
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5