MakeItFrom.com
Menu (ESC)

Grade 6 Titanium vs. S31277 Stainless Steel

Grade 6 titanium belongs to the titanium alloys classification, while S31277 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is grade 6 titanium and the bottom bar is S31277 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
210
Elongation at Break, % 11
45
Fatigue Strength, MPa 290
380
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 39
80
Shear Strength, MPa 530
600
Tensile Strength: Ultimate (UTS), MPa 890
860
Tensile Strength: Yield (Proof), MPa 840
410

Thermal Properties

Latent Heat of Fusion, J/g 410
310
Maximum Temperature: Mechanical, °C 310
1100
Melting Completion (Liquidus), °C 1580
1460
Melting Onset (Solidus), °C 1530
1410
Specific Heat Capacity, J/kg-K 550
460
Thermal Expansion, µm/m-K 9.4
16

Otherwise Unclassified Properties

Base Metal Price, % relative 36
36
Density, g/cm3 4.5
8.1
Embodied Carbon, kg CO2/kg material 30
6.7
Embodied Energy, MJ/kg 480
90
Embodied Water, L/kg 190
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
320
Resilience: Unit (Modulus of Resilience), kJ/m3 3390
410
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 55
29
Strength to Weight: Bending, points 46
25
Thermal Shock Resistance, points 65
19

Alloy Composition

Aluminum (Al), % 4.0 to 6.0
0
Carbon (C), % 0 to 0.080
0 to 0.020
Chromium (Cr), % 0
20.5 to 23
Copper (Cu), % 0
0.5 to 1.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.5
35.5 to 46.2
Manganese (Mn), % 0
0 to 3.0
Molybdenum (Mo), % 0
6.5 to 8.0
Nickel (Ni), % 0
26 to 28
Nitrogen (N), % 0 to 0.030
0.3 to 0.4
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 2.0 to 3.0
0
Titanium (Ti), % 89.8 to 94
0
Residuals, % 0 to 0.4
0