MakeItFrom.com
Menu (ESC)

Grade 6 Titanium vs. S44535 Stainless Steel

Grade 6 titanium belongs to the titanium alloys classification, while S44535 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 6 titanium and the bottom bar is S44535 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 11
28
Fatigue Strength, MPa 290
210
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 39
78
Shear Strength, MPa 530
290
Tensile Strength: Ultimate (UTS), MPa 890
450
Tensile Strength: Yield (Proof), MPa 840
290

Thermal Properties

Latent Heat of Fusion, J/g 410
290
Maximum Temperature: Mechanical, °C 310
1000
Melting Completion (Liquidus), °C 1580
1430
Melting Onset (Solidus), °C 1530
1390
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 7.8
21
Thermal Expansion, µm/m-K 9.4
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 36
11
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 30
2.4
Embodied Energy, MJ/kg 480
34
Embodied Water, L/kg 190
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
110
Resilience: Unit (Modulus of Resilience), kJ/m3 3390
200
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 55
16
Strength to Weight: Bending, points 46
17
Thermal Diffusivity, mm2/s 3.2
5.6
Thermal Shock Resistance, points 65
15

Alloy Composition

Aluminum (Al), % 4.0 to 6.0
0 to 0.5
Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 0
20 to 24
Copper (Cu), % 0
0 to 0.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.5
73.2 to 79.6
Lanthanum (La), % 0
0.040 to 0.2
Manganese (Mn), % 0
0.3 to 0.8
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 2.0 to 3.0
0
Titanium (Ti), % 89.8 to 94
0.030 to 0.2
Residuals, % 0 to 0.4
0