MakeItFrom.com
Menu (ESC)

Grade 6 Titanium vs. S44800 Stainless Steel

Grade 6 titanium belongs to the titanium alloys classification, while S44800 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 6 titanium and the bottom bar is S44800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
210
Elongation at Break, % 11
23
Fatigue Strength, MPa 290
300
Poisson's Ratio 0.32
0.27
Reduction in Area, % 27
45
Shear Modulus, GPa 39
82
Shear Strength, MPa 530
370
Tensile Strength: Ultimate (UTS), MPa 890
590
Tensile Strength: Yield (Proof), MPa 840
450

Thermal Properties

Latent Heat of Fusion, J/g 410
300
Maximum Temperature: Mechanical, °C 310
1100
Melting Completion (Liquidus), °C 1580
1460
Melting Onset (Solidus), °C 1530
1410
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 7.8
17
Thermal Expansion, µm/m-K 9.4
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 36
19
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 30
3.8
Embodied Energy, MJ/kg 480
52
Embodied Water, L/kg 190
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
120
Resilience: Unit (Modulus of Resilience), kJ/m3 3390
480
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 55
21
Strength to Weight: Bending, points 46
20
Thermal Diffusivity, mm2/s 3.2
4.6
Thermal Shock Resistance, points 65
19

Alloy Composition

Aluminum (Al), % 4.0 to 6.0
0
Carbon (C), % 0 to 0.080
0 to 0.010
Chromium (Cr), % 0
28 to 30
Copper (Cu), % 0
0 to 0.15
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.5
62.6 to 66.5
Manganese (Mn), % 0
0 to 0.3
Molybdenum (Mo), % 0
3.5 to 4.2
Nickel (Ni), % 0
2.0 to 2.5
Nitrogen (N), % 0 to 0.030
0 to 0.020
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.2
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 2.0 to 3.0
0
Titanium (Ti), % 89.8 to 94
0
Residuals, % 0 to 0.4
0