MakeItFrom.com
Menu (ESC)

Grade 7 Titanium vs. AISI 310S Stainless Steel

Grade 7 titanium belongs to the titanium alloys classification, while AISI 310S stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 7 titanium and the bottom bar is AISI 310S stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
170 to 210
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 24
34 to 44
Fatigue Strength, MPa 250
250 to 280
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 38
79
Shear Strength, MPa 270
420 to 470
Tensile Strength: Ultimate (UTS), MPa 420
600 to 710
Tensile Strength: Yield (Proof), MPa 340
270 to 350

Thermal Properties

Latent Heat of Fusion, J/g 420
310
Maximum Temperature: Mechanical, °C 320
1100
Melting Completion (Liquidus), °C 1660
1450
Melting Onset (Solidus), °C 1610
1400
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 22
16
Thermal Expansion, µm/m-K 9.2
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 7.2
2.3

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 47
4.3
Embodied Energy, MJ/kg 800
61
Embodied Water, L/kg 470
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95
200 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 560
190 to 310
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 26
21 to 25
Strength to Weight: Bending, points 28
20 to 22
Thermal Diffusivity, mm2/s 8.9
4.1
Thermal Shock Resistance, points 31
14 to 16

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.080
Chromium (Cr), % 0
24 to 26
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
48.3 to 57
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
19 to 22
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Palladium (Pd), % 0.12 to 0.25
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 98.7 to 99.88
0
Residuals, % 0 to 0.4
0