Grade 704C Zirconium vs. SAE-AISI 1050 Steel
Grade 704C zirconium belongs to the otherwise unclassified metals classification, while SAE-AISI 1050 steel belongs to the iron alloys. There are 21 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown.
For each property being compared, the top bar is grade 704C zirconium and the bottom bar is SAE-AISI 1050 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 210 | |
200 to 220 |
Elastic (Young's, Tensile) Modulus, GPa | 97 | |
190 |
Elongation at Break, % | 11 | |
11 to 17 |
Poisson's Ratio | 0.34 | |
0.29 |
Shear Modulus, GPa | 36 | |
72 |
Tensile Strength: Ultimate (UTS), MPa | 470 | |
690 to 790 |
Tensile Strength: Yield (Proof), MPa | 310 | |
390 to 650 |
Thermal Properties
Latent Heat of Fusion, J/g | 240 | |
250 |
Specific Heat Capacity, J/kg-K | 270 | |
470 |
Thermal Conductivity, W/m-K | 21 | |
51 |
Thermal Expansion, µm/m-K | 5.9 | |
12 |
Otherwise Unclassified Properties
Density, g/cm3 | 6.7 | |
7.8 |
Embodied Water, L/kg | 460 | |
46 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 48 | |
81 to 100 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 490 | |
400 to 1130 |
Stiffness to Weight: Axial, points | 8.1 | |
13 |
Stiffness to Weight: Bending, points | 23 | |
24 |
Strength to Weight: Axial, points | 20 | |
25 to 28 |
Strength to Weight: Bending, points | 20 | |
22 to 24 |
Thermal Diffusivity, mm2/s | 12 | |
14 |
Thermal Shock Resistance, points | 58 | |
22 to 25 |
Alloy Composition
Carbon (C), % | 0 to 0.1 | |
0.48 to 0.55 |
Hafnium (Hf), % | 0 to 4.5 | |
0 |
Hydrogen (H), % | 0 to 0.0050 | |
0 |
Iron (Fe), % | 0 to 0.3 | |
98.5 to 98.9 |
Manganese (Mn), % | 0 | |
0.6 to 0.9 |
Nitrogen (N), % | 0 to 0.030 | |
0 |
Oxygen (O), % | 0 to 0.3 | |
0 |
Phosphorus (P), % | 0 to 0.010 | |
0 to 0.040 |
Sulfur (S), % | 0 | |
0 to 0.050 |
Tin (Sn), % | 1.0 to 2.0 | |
0 |
Zirconium (Zr), % | 92.9 to 99 | |
0 |