MakeItFrom.com
Menu (ESC)

Grade C-2 Titanium vs. 1050 Aluminum

Grade C-2 titanium belongs to the titanium alloys classification, while 1050 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade C-2 titanium and the bottom bar is 1050 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
68
Elongation at Break, % 17
4.6 to 37
Fatigue Strength, MPa 200
31 to 57
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
26
Tensile Strength: Ultimate (UTS), MPa 390
76 to 140
Tensile Strength: Yield (Proof), MPa 310
25 to 120

Thermal Properties

Latent Heat of Fusion, J/g 420
400
Maximum Temperature: Mechanical, °C 320
170
Melting Completion (Liquidus), °C 1660
640
Melting Onset (Solidus), °C 1610
650
Specific Heat Capacity, J/kg-K 540
900
Thermal Conductivity, W/m-K 21
230
Thermal Expansion, µm/m-K 8.7
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
61
Electrical Conductivity: Equal Weight (Specific), % IACS 7.1
200

Otherwise Unclassified Properties

Base Metal Price, % relative 37
9.5
Density, g/cm3 4.5
2.7
Embodied Carbon, kg CO2/kg material 31
8.3
Embodied Energy, MJ/kg 510
160
Embodied Water, L/kg 110
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61
5.4 to 22
Resilience: Unit (Modulus of Resilience), kJ/m3 460
4.6 to 110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
50
Strength to Weight: Axial, points 24
7.8 to 14
Strength to Weight: Bending, points 26
15 to 22
Thermal Diffusivity, mm2/s 8.8
94
Thermal Shock Resistance, points 30
3.4 to 6.2

Alloy Composition

Aluminum (Al), % 0
99.5 to 100
Carbon (C), % 0 to 0.1
0
Copper (Cu), % 0
0 to 0.050
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
0 to 0.4
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0
0 to 0.050
Nickel (Ni), % 0 to 0.050
0
Oxygen (O), % 0 to 0.4
0
Silicon (Si), % 0
0 to 0.25
Titanium (Ti), % 98.8 to 100
0 to 0.030
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0 to 0.4
0