MakeItFrom.com
Menu (ESC)

Grade C-2 Titanium vs. 359.0 Aluminum

Grade C-2 titanium belongs to the titanium alloys classification, while 359.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade C-2 titanium and the bottom bar is 359.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
90 to 100
Elastic (Young's, Tensile) Modulus, GPa 110
71
Elongation at Break, % 17
3.8 to 4.9
Fatigue Strength, MPa 200
100
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
27
Tensile Strength: Ultimate (UTS), MPa 390
340 to 350
Tensile Strength: Yield (Proof), MPa 310
250 to 280

Thermal Properties

Latent Heat of Fusion, J/g 420
530
Maximum Temperature: Mechanical, °C 320
170
Melting Completion (Liquidus), °C 1660
600
Melting Onset (Solidus), °C 1610
570
Specific Heat Capacity, J/kg-K 540
910
Thermal Conductivity, W/m-K 21
140
Thermal Expansion, µm/m-K 8.7
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
35
Electrical Conductivity: Equal Weight (Specific), % IACS 7.1
120

Otherwise Unclassified Properties

Base Metal Price, % relative 37
9.5
Density, g/cm3 4.5
2.6
Embodied Carbon, kg CO2/kg material 31
8.0
Embodied Energy, MJ/kg 510
150
Embodied Water, L/kg 110
1090

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61
12 to 15
Resilience: Unit (Modulus of Resilience), kJ/m3 460
450 to 540
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 35
54
Strength to Weight: Axial, points 24
37 to 38
Strength to Weight: Bending, points 26
42 to 43
Thermal Diffusivity, mm2/s 8.8
59
Thermal Shock Resistance, points 30
16 to 17

Alloy Composition

Aluminum (Al), % 0
88.9 to 91
Carbon (C), % 0 to 0.1
0
Copper (Cu), % 0
0 to 0.2
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
0 to 0.2
Magnesium (Mg), % 0
0.5 to 0.7
Manganese (Mn), % 0
0 to 0.1
Nickel (Ni), % 0 to 0.050
0
Oxygen (O), % 0 to 0.4
0
Silicon (Si), % 0
8.5 to 9.5
Titanium (Ti), % 98.8 to 100
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15