MakeItFrom.com
Menu (ESC)

Grade C-2 Titanium vs. 5252 Aluminum

Grade C-2 titanium belongs to the titanium alloys classification, while 5252 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade C-2 titanium and the bottom bar is 5252 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
68 to 75
Elastic (Young's, Tensile) Modulus, GPa 110
68
Elongation at Break, % 17
4.5 to 11
Fatigue Strength, MPa 200
100 to 110
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
25
Tensile Strength: Ultimate (UTS), MPa 390
230 to 290
Tensile Strength: Yield (Proof), MPa 310
170 to 240

Thermal Properties

Latent Heat of Fusion, J/g 420
400
Maximum Temperature: Mechanical, °C 320
180
Melting Completion (Liquidus), °C 1660
650
Melting Onset (Solidus), °C 1610
610
Specific Heat Capacity, J/kg-K 540
910
Thermal Conductivity, W/m-K 21
140
Thermal Expansion, µm/m-K 8.7
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
34
Electrical Conductivity: Equal Weight (Specific), % IACS 7.1
120

Otherwise Unclassified Properties

Base Metal Price, % relative 37
9.5
Density, g/cm3 4.5
2.7
Embodied Carbon, kg CO2/kg material 31
8.7
Embodied Energy, MJ/kg 510
160
Embodied Water, L/kg 110
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61
12 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 460
210 to 430
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
51
Strength to Weight: Axial, points 24
23 to 30
Strength to Weight: Bending, points 26
31 to 36
Thermal Diffusivity, mm2/s 8.8
57
Thermal Shock Resistance, points 30
10 to 13

Alloy Composition

Aluminum (Al), % 0
96.6 to 97.8
Carbon (C), % 0 to 0.1
0
Copper (Cu), % 0
0 to 0.1
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
0 to 0.1
Magnesium (Mg), % 0
2.2 to 2.8
Manganese (Mn), % 0
0 to 0.1
Nickel (Ni), % 0 to 0.050
0
Oxygen (O), % 0 to 0.4
0
Silicon (Si), % 0
0 to 0.080
Titanium (Ti), % 98.8 to 100
0
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0
0 to 0.1