MakeItFrom.com
Menu (ESC)

Grade C-2 Titanium vs. 8011A Aluminum

Grade C-2 titanium belongs to the titanium alloys classification, while 8011A aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is grade C-2 titanium and the bottom bar is 8011A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
25 to 50
Elastic (Young's, Tensile) Modulus, GPa 110
69
Elongation at Break, % 17
1.7 to 28
Fatigue Strength, MPa 200
33 to 76
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
26
Tensile Strength: Ultimate (UTS), MPa 390
100 to 180
Tensile Strength: Yield (Proof), MPa 310
34 to 170

Thermal Properties

Latent Heat of Fusion, J/g 420
400
Maximum Temperature: Mechanical, °C 320
170
Melting Completion (Liquidus), °C 1660
650
Melting Onset (Solidus), °C 1610
630
Specific Heat Capacity, J/kg-K 540
900
Thermal Conductivity, W/m-K 21
210
Thermal Expansion, µm/m-K 8.7
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
56
Electrical Conductivity: Equal Weight (Specific), % IACS 7.1
180

Otherwise Unclassified Properties

Base Metal Price, % relative 37
9.0
Density, g/cm3 4.5
2.7
Embodied Carbon, kg CO2/kg material 31
8.2
Embodied Energy, MJ/kg 510
150
Embodied Water, L/kg 110
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61
3.0 to 22
Resilience: Unit (Modulus of Resilience), kJ/m3 460
8.2 to 200
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
50
Strength to Weight: Axial, points 24
11 to 18
Strength to Weight: Bending, points 26
18 to 26
Thermal Diffusivity, mm2/s 8.8
86
Thermal Shock Resistance, points 30
4.6 to 8.1

Alloy Composition

Aluminum (Al), % 0
97.5 to 99.1
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0
0 to 0.1
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
0.5 to 1.0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0
0 to 0.1
Nickel (Ni), % 0 to 0.050
0
Oxygen (O), % 0 to 0.4
0
Silicon (Si), % 0
0.4 to 0.8
Titanium (Ti), % 98.8 to 100
0 to 0.050
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15